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Abstract. Multilayer products made of ultra-thin layers are widely used in modern science and
technology. Laser exposure is used as one of the promising methods of processing such products.
In this regard, we study the ablation of a layered target. A physical model is constructed,
numerical simulation is performed, and experiments are carried out. The experiments were
conducted with two different lasers and various diameters of the focal spot. To estimate
the absorbed energy the reflection coefficient was measured. The results of calculations and
experiments are consistent with an accuracy of about 10%. This allowed us to refine the model
of two-temperature states and determine the strength of nickel. It is explained why, with an
increase in the absorbed fluence, first the upper layer breaks in the multilayer.

1. Introduction

Products made from alternating layers of nanometer thickness have many uses. Nickel–aluminum
laminates are used as “soft” explosives [1–3]. Multilayer mirrors are the basis of optical systems
that control ultraviolet and soft x-rays [4]; such mirrors, for example, are necessary for modern
photolithographic machines [4–6]. They process heterostructures—layered structures grown on
a substrate from various semiconductors. The laser makes the necessary cuts in the electrodes in
alternating thin layers of solar panels (photovoltaicsa; structuring of CIGS thin film solar cells;
CIGS—copper indium gallium deselenide) [7, 8]. Similar in physical meaning are the problems
of selective structuring of single-film targets [8–13].

In this paper, we study a layered target composed of alternating layers of nickel and aluminum.
Nickel is the first layer on which the laser beam is incident, figure 1; laser light comes from the
left side. In the calculations, the first pair of layers has a thickness of 45 nm, then five pairs of
thin layers with a thickness of 25 nm and a thick nickel layer with a thickness of 160 nm instead
of a substrate. In the experiment there are more thin layers. The layers are sprayed onto a
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Figure 1. The multilayer scheme—the initional density profile. The first pair of layers of
nickel and aluminum are relatively thick (d1 = 45 nm), then 5 pairs of thin layers of Ni and Al
(d2 = 25 nm); in the calculation, instead of the substrate, an excess thickness (160 nm) layer of
nickel is added; in the experiment, there are more thin layers and a glass substrate.

silicon glass substrate. But in this paper we restrict ourselves to calculating the first threshold.
In this case, as will be seen below, only the first few layers of the target play a significant role.

Important information can be obtained from an analysis of the time displacement of the rear
side of the target xrear-side(t). Indeed, the function xrear-side(t) can be recalculated into the profile
shape of the wave traveling to the right (with the orientation of the axis x, taken in figure 1). On
this principle is based the analysis of VISAR (Velocity interferometer system for any reflector)
[14, 15] and pump-probe experiments (pump-probe, pump-diagnostics [16]) [17–26]. The right-
running wave coming out of the multilayer system, should be much wider than in the case of
ultrashort shock waves generated by femtosecond pulses in homogeneous volume targets. This
is due to internal reflections in the layers. A discussion of this question is beyond the scope of
this paper.

We will increase the values of the absorbed fluence Fabs from a zero value. In a continuous
homogeneous target, there is no visible damage of the target in the laser spot, up to the fluence
value Fabs|abl. This value is called the ablation threshold. Significant damage (crater) remains
in the target when the value of Fabs|abl is exceeded. The depth of the crater at the threshold
is xcrat|abl. As you can see, the crater is formed by a “jump” when the threshold is exceeded,
see, for example, [27–31]. The depth of the crater xcrat(Fabs) usually grows monotonously with
fluence increasing [27–30,32,33].

It is clear that in the case of a multilayer target, there is also an ablation threshold Fabs|abl-1,
below which the upper layer (and therefore the lower layers) does not have noticeable damage.
However, in the case of a multilayer target, the function xcrat(Fabs) when the fluence Fabs rises
above the first threshold Fabs|abl-1 may have additional jumps [34–36]. These additional jumps
are caused by breakes at more and more deeply located contact boundaries. We are talking
about contact boundaries between layers of successive different substances. There is a chain of
thresholds above the first threshold: Fabs|abl-1 < Fabs|abl-2 < Fabs|abl-3, . . . [34–36]. Of course,
this behavior is due to the play of reflected and transmitted acoustic waves and the fact that



usually the tensile strength of the contacts is lower than the strength of adjacent homogeneous
substances. We will analyze this question below.

It will be seen that due to wave interference, the amplitude of the tensile stress on the contact
may be lower than the amplitude of the tensile stresses in the film thickness. For example, when a
layer with a finite acoustic impedance Z contacts with two external layers with a low impedance,
the tensile stresses on the contacts are small. If the contact strength (contact adhesion) is not
too small, then in this situation it is difficult to expect the contact to break.

Note that the question of competition between the internal gap and the gap on the contact
of substances was considered in the works [9, 37–40]. In these works, a single layer (film) on
the substrate was studied. It has been shown that, depending on the magnitude of contact
adhesion and the impedance ratio, two situations are possible. With a not too small ratio of
impedances and weak adhesion, the film is detached from the contact at a relatively small value
of the absorbed fluence Fabs|cb (first scenario); cb is contact boundary; detachment is also called
film separation or contact break. Under ultrashort exposure, the contact breaking moment is
approximately equal to df/cs [9,37,38], here df is the thickness of the film glued to the substrate,
cs is the speed of sound in the film. In this situation, when the fluence Fabs increases, a break
occurs inside the film at the second threshold Fabs|internl, Fabs|internl > Fabs|cb [38–40]. The
internal break occurs at a time on the order of (1/2)df/cs.

In the second situation, the impedance ratio is small, the strength of contact adhesion is
significant. Then there is no delamination of the film from the contact. There is an internal
break in the film. Note that the above discussed cases where the impedance of a single film is
greater than the impedance of the substrate.

In this paper, we consider the layered target shown in figure 1. Light is absorbed in nickel
(1st layer). Because of the finite thickness of the skin layer (δ about 20 nm) and the relatively
small thickness of the first nickel layer (d1 = 45 nm), some of the light passes through the nickel
film and warms the aluminum layer. But the fraction of transmitted light in comparison with
the light absorbed in nickel is small.

The acoustic impedance of nickel significantly exceeds the impedance of aluminum
(impedance ratio is about 3). Therefore, as will be shown below, the lowest is the threshold
Fabs|internal, at which the internal break of the first nickel film occurs. Moreover, this threshold
is significantly less than the threshold Fabs|bulk, at which thermomechanical ablation of the bulk
nickel target begins. [41–43]. In [41] a free-hanging film of finite (50 nm) thickness is considered,
so that it does not give a breakdown threshold for a continuous target. According to [43,
equations (1.2), (1.3)] at threshold Fabs ≈ 140 mJ/cm2, dcrat ≈ 20 nm. The fact is that in
the case of a sufficiently thin film, there are two rarefaction waves running from the front and
back boundaries of the film [9,42]. Summing up, they increase the tensile stress. This addition
lowers the threshold for the absorbed fluence in comparison with the case of a bulk target, when
the rarefaction wave is one—running from the frontal boundary. Above in this paragraph, the
words “sufficiently thin film” mean that the thickness of the film is not too much greater than
the thickness of the laser heating layer dT .

2. Experiment

The experiments carried out have a number of features that are very important for understanding
the essence of the matter. To quantitatively compare the results of experiments and calculations,
it is necessary to know the amount of energy absorbed by the target (fluence Fabs) during a single
exposure session. It is not easy to determine this value. In ordinary experimental descriptions,
the incident fluence is given Finc. But in metals in the optical radiation range, the reflection
coefficient R(ω) is significant. Therefore, only part of the incident radiation Fabs = (1−R)Finc

works in the target.
The Fresnel formulas and the constant reference value of the complex refractive index n(ω)
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Figure 2. Profile of the crater at the sample surface measured by AFM. Laser fluence in center
of spot is above the second threshold Fabs|0 > Fabs|abl-2. Diameters d1 and d2 of the craters at
the first and second spallation, respectively, are used to calculate the threshold fluence, h1 and
h2 are the corresponding crater depths.

cannot be used to calculate the coefficient R(n). The fact is that under femtosecond exposure,
complex refractive index n(t), n =

√
ε, ε is the dielectric constant, changes during the pulse. As

known, this is due to the strong excitation of the electronic subsystem. There are theoretical
calculations of the indicator n(t). But they are based on a physical model of two-temperature
states. Meanwhile, this model itself needs to be tested in experiments. The change in the
refractive index n due to the transition to the two-temperature state is especially significant for
well-reflecting metals. In our case, the reflection coefficient of nickel is not large. And the effect
of the change in the n indicator is quite small.

It is very important that in our experiments the amount of absorbed energy was determined
directly during the experiment. The description of the details of the experiments requires
a separate statement consideration. Accordingly, in numerical simulation, we operated with
precisely measured absorbed energy Fabs; as mentioned, this is important for comparing
calculations and experiments.

Another important condition is the following. Experiments were conducted in parallel on
two different femtosecond lasers with different diameters of the focus spot. This seems to be
the first time this approach has been applied in the class of problems under consideration. The
ytterbium fiber laser had a sharp focus close to the diffraction limit; the pulse duration was
350 fs. On the other system, the usual big-spot focus was applied. The TiS system was used.
The beam fell at an angle of 60 degrees from the normal; p-polarization, pulse duration 40 fs.
The semiaxes of the ellipse of the illumination spot were 22 and 45 µm at a level of 1/e.

Impacts with a small spot were applied earlier [44–46, and citations there]. Large spot
exposures are common [20, 47]. In this paper, as mentioned, probably for the first time, both
approaches are used together. Such a comparison greatly improves the reliability of the data
obtained. The threshold value on incident fluence was determined from dependence of diameter
of the crater on pulse energy [48]. The diameter d and depth h of craters were measured by
atomic force microscopy (AFM) or interferometric technique with a nanometric accuracy. As
an example figure 2 shows the profile of a crater measured using AFM.

Here are the main data obtained in such, firstly, joint experiments, and secondly, with
the determination of the reflection coefficient. With this data, we will compare the results



of numerical modeling. The first ablation threshold is

Fabs|abl-1 ≈ 40 mJ/cm2 (1)

for absorbed fluence. It is important that the first spallation occurs not at the first nickel–
aluminum contact, but in the thickness of the first nickel layer, see figures 1 and 2. The depth
of the crater on the threshold is

xcrat|abl-1 ≈ 20–25 nm, (2)

which is close to half the layer thickness.
The second spallation occurs at the boundary of the first contact between nickel and

aluminum. The threshold energy of the second spall is

Fabs|abl-2 = 160–200 mJ/cm2. (3)

As you can see, for the second spall, a large 4–5-fold excess in energy is required, see (1), (3).
The crater depth at the second threshold is

xcrat|abl-2 ≈ 45 nm. (4)

Note also that according to the data obtained from our experiments, the ablation threshold of
a homogeneous bulk thick target made of nickel is

Fabs|abl = 160 mJ/cm2; xcrat|abl = 20 nm. (5)

3. Physical model and calculation scheme

Large literature is devoted to the description of the physics of two-temperature states, which
continues to be replenished. The expansion of the literature is connected with the problems of
research of such states. Our model is based on the separation of electronic and ionic contributions
to free energy. [13,49–52] The split-contribution approach goes back to the work of the 60s. Then
it became necessary to describe hot media with a density on the order of solid-state density.
But these were hot, dense, one-temperature states; one-temperature, mean the temperatures of
the electron and ion subsystems are equal. A new situation arose when fast laser heating led to
a sharp excess of the electron temperature over the ion temperature.

In the first work [49], and in many papers so far, the authors have limited themselves to the
thermophysics of the electron and ion subsystems. But this is not enough to describe phenomena
near and above the ablation threshold Fabl. With this energy of laser action, hydrodynamic
processes begin to play a significant role: displacement, compression and stretching of the
substance.

In our calculations (results below) we use the previously developed two-temperature (2T)
hydrodynamic code 2T-HD [50, 51] see also [33, 53, 54]. The consideration of multilayering is
reduced to the fact that in the interval of Lagrangian cells related to each material, the equations
of state, electron–ion heat transfer and thermal conductivity for this material are used. The
Lagrangian grid is chosen so that the boundaries of different substances fall on the grid nodes.
Since the Lagrangian coordinate is attached to the substance, the initial reference of cells and
substances is preserved.

Mechanical boundary conditions at the boundaries of different substances are performed
automatically. The boundary conditions in the thermal problem are not so trivial. The thickness
of the first layer of nickel d1 = 45 nm (see figure 1) is more than twice the thickness of the skin
layer δ = 20 nm, so the main part of the laser radiation is absorbed in this layer. This allow us to
neglect the possible effects of reflection at the interface between nickel and aluminum and assume
that the heat release power obeys the Bouguer law with a constant decay length δ (the thickness
of the skin layer in intensity). As will be seen later, heating due to thermal conductivity is not
very significant in comparison with the action of the compression wave, coming out of the first



hot layer. Therefore, we neglect all possible thermal effects on the border of the two metals, and
believe that there remains the electron temperature and heat flux. Then it is enough to assume
that the thermal conductivity coefficient at the boundary of metals 1 and 2

κ1−2 =
κ1κ2(xb+1 − xb-1)

κ1(xb+1 − xb) + κ2(xb − xb-1)
,

where κ1, κ2 are thermal conductivity coefficients for metal 1 and 2, respectively, xb, xb-1, xb+1

are coordinates of the border (Lagrangian node on the border), the preceding Lagrangian node
(in metal 1) and the next Lagrangian node (in metal 2).

Although it is referred to as “hydrodynamics”, the code describes in a cross-cutting manner
both hydrodynamics and the mechanics of a deformable solid (MDTT). Solid mechanics is
described both in the plastic approximation and with the use of elastoplastics models [23–25,55].
Below, it will be enough for us to limit ourselves to a plastic approximation. An end-to-end
description of the solid and liquid phases is necessary in the analysis of laser exposure problems
because there are processes of melting and crystallization.

4. Early stage, first picosecond, abnormal temperature profiles

In this paper, we will limit ourselves to calculating first threshold for the absorbed energy
Fabs|abl-1 and determining the depth of the crater xcrat|abl-1 at first threshold. This will allow us
to verify the model used by comparing with the experimental data (1) and (2). As will be seen
below, the calculations are consistent with the experiments. Therefore, the model adequately
describes the physics of the processes. In the future, using this proven approach, numerical
simulations will be performed to determine second threshold Fabs|abl-2 (3). Hopefully, it will be
possible to determine the strength of adhesion on the contact between the sprayed nickel and
aluminum, see figure 1, where this contact is shown. Next, calculations will be performed for
comparison with experiments in statement (5).

First spall occurs on the sound time scales ts = df/cs. Substituting here the sound velocity
in nickel of 4.6 km/s and the thickness of first film 45 nm (see figure 1), we find ts ≈ 10 ps. At
such times, only 2 maximum 3 first layers of the multilayer target interact hydrodynamically.

The presentation of the results naturally begins with the early stages and the thermal picture.
The fact is that with femtosecond exposure, the initial propagation of heat from the skin layer
occurs at supersonic speed [55,56]. A little later, the hydrodynamic effects associated with the
propagation of acoustic waves with the speed of sound become significant.

Let us compare the material characteristics that are essential for describing the ultrashort
effect on nickel and aluminum nanometer films. First, there is an impressive difference in the
electronic heat capacity Ce(Te, ρ). Under normal conditions, the heat capacity Ce of nickel is
an order of magnitude greater. This is due to structure of the electronic spectrum of nickel
3d8−9 4s2−1 compared to aluminum 3s2 3p1. Nickel has a much denser spectrum of electronic
states below and above the Fermi level compared to aluminum. Due to the difference in heat
capacity Ce, the electron temperature Te of nickel is lower than in aluminum, with equal electron
energy densities per unit volume.

Secondly, the ionic heat capacity of nickel per unit volume is 1.5 times higher than that of
aluminum. If thermal conductivity processes are not taken into account, this circumstance is
the reason for higher ion temperatures Ti in aluminum at equal ionic energy densities per unit
volume. Finally, thirdly, nickel is significantly stiffer than fairly soft aluminum. As mentioned
above, the acoustic impedance of nickel is three times greater.

We see that the usual course of temperature Te deep into the target is broken. An anomaly
in the electron temperature profiles at an early stage is associated with the difference in heat
capacities Ce noted above. Let us look at figure 3. Namely, there is an inverse section where the
electron heat does not flow into the depth of the target, but in the opposite direction—towards
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the front (that is, irradiated) surface! This anomaly also leads to an anomaly in the profile of
energy, added to the electronic subsystem Eadd, see figure 3. At the early stage considered here,
this energy is formed mainly due to the absorption of laser radiation (absorbed energy Eabs),



Figure 5. Electron temperature profile Te, electron heat flux q heat release power and increase
in electron energy Eadd.

but is partially redistributed by thermal conductivity. Then, during the 2T stage, the main
effects become the flow of energy from the heated region deep into the target due to thermal
conductivity and the transfer of energy from the electronic subsystem to the ionic one, and
effects associated with the movement of matter undoubtedly dominate in the acoustic stage.
Figure 4 shows the results of a series of calculations corresponding to the time t = 0 for different
absorbed fluences Fabs. The situation with the anomaly is the same. The time in our calculations
is calculated from the maximum intensity of the laser pulse I(t) ∝ exp(−t2/τ2

L
). The full width

of the pulse at level 1/e is equal to 2τL = 100 fs. By the time t = 0, half of the total absorbed
fluence Fabs, specified in the captions under each of the graphs 3 and 4, has been entered into
the target.

In figure 5 instantaneous electron temperature profiles Te, electron heat flux q heat release
power ε [W/m3] per unit volume according to Bouguer’s law ε ∝ exp(−x/δ) with a decay length
of δ = 20 nm (the thickness of the skin layer in intensity) and increase in electron energy Eadd.
The Bouguer distribution ε ∝ exp(−x/δ) in figure 5 is given in dimensionless units. For heat
generation ε a simplified Bouguer law was adopted, in which we did not take into account the
refraction of light at the contact boundary between nickel and aluminum. This approach is
justified, since a small amount of laser energy reaches the contact.

Thus, the difference in the heat capacities Ce in nickel and aluminum with a continuous heat
output ε at the contact leads to the inversion of the electron heat flux and the anomaly in the
electron temperature profile in figure 5. In figure 5 the horizontal line indicates the zero heat
flux, and the vertical line indicates the contact position between nickel and aluminum. Note that
the electronic heat flow is units of GW/cm2. At the same time, the absorbed intensity of the light
flux Iabs ∼ Fabs/τL is two orders of magnitude higher—hundreds of GW/cm2. That is, the energy
in the skin layer of the film arrives per unit time two orders of magnitude more than is diverted
due to electronic thermal conductivity. Therefore, firstly, the electronic temperature increases
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Figure 6. Coefficients of electronic thermal conductivity κ and of electron-ion interaction α.
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during the pulse and, secondly, the heat sink from the skin continues for a considerable time
after the end of the pulse. To complete the picture figure 6 shows the profiles of the coefficient
of electronic thermal conductivity κ and the coefficient of electron–ion interaction α.

However, the abnormal behavior shown in figures 3–5 does not last long. This is due to
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the small amount of light energy that enters aluminum through the nickel film. By the first
picosecond after the ultrashort laser pulse, the profiles of the electron temperature and the
electron energy flow assume the usual monotonous form. The evolution of instantaneous profiles
from the anomalous to the normal type is shown in figure 7.

A quick return to the standard form is due to the following circumstance. The energy
accumulated in the skin layer during a pulse with an intensity of hundreds of GW/cm2, is then
removed with a heat flux of the order of GW/cm2 to the thickness of the films. Thus a small
amount of energy penetrated into the aluminum for the pulse time is irrelevant. Indeed, this
amount is small compared with the energy accumulated in the skin layer. The accumulated
energy is relatively long (compared with the duration of τL) removed from the skin layer. The
cooling of the skin layer takes a relatively long time due to the relatively low intensity of the
electron heat flux.

5. Energy transfer to the ionic subsystem and melting

The determining hydrodynamic motion begins at the acoustic stage, at times starting from a
few picoseconds. But before we begin to describe the force fields and the reaction of matter
(compression, stretching), let us talk about the change in the phase state due to heating. This
is important for understanding thebreaking process in a substance (thermomechanical ablation
process), since the tensile strength of a substance is significantly reduced by melting. Figure 8
shows a typical alternation of layers of different phases at the stage when the transfer of energy
from the electronic subsystem to the ion subsystem is almost complete. This means that the
two-temperature stage is almost complete and the substances are in one-temperature states.

The alternation of the layers vapor–liquid phase–two-phase mixture–solid phase is shown in
figures 8 and 9. A two-phase mixture consists of liquid and solid phases. The melting threshold
is a rather poorly defined value. If we take the absorbed fluence Fabs, at which a pure liquid
phase appears near the border with air, then this threshold is somewhere in the fluence range
Fabs from 35 to 40 mJ/cm2, see figure 9. If the threshold is taken as a fluence, at which a mixture
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of melt and crystal is formed at the border, then the threshold fluence will be significantly less.
At the time t = 10 ps, shown in figures 8 and 9, an acoustic wave propagates through

the first layers of nickel and aluminum. In this wave, the contact and the aluminum near the
contact are under compressive pressure, see text below. Meanwhile, the region of the two-phase
mixture of liquid and solid nickel is stretched under negative pressure. The melting point Tm is a
function of the pressure Tm(p). Therefore, nickel melts at a temperature below the temperature
Tm(p = 0) = 1728 K. While aluminum near the contact boundary remains in the crystalline
state, although its temperature is higher than the melting point of aluminum Tm(p = 0) = 934 K
under negligible pressure of aluminum vapors at this temperature.

6. Acoustic stage, pressure profiles

A typical pressure profile is shown in figure 10. This is the profile at the stage where the
first nickel film is subjected to strong tension. Stretching is associated with the summation of
rarefaction waves coming from the boundary with air and from the boundary with aluminum.
In these rarefaction waves, the first nickel layer is unloaded towards acoustically weaker media.
Unloading at acoustic times is caused by a rise in pressure in the first nickel layer due to rapid
laser heating.

In figure 10 a red vertical straight line and a red circlemarker point out the position of the
place of greatest tension at time 15 ps. Figure 11 shows how the amplitude of the highest
tensile stress |Pxx|max changes over time. Cases with values of the absorbed fluence equal to
40 and 60 mJ/cm2 are considered. We see that due to the saturation of the dependence p(ρ),
the amplitude |Pxx|max changes little when the fluence Fabs increases by a factor of 1.5 from the
value of 40 mJ/cm2. Under the dependence p(ρ) here we assume the dependence of cold pressure
on density. This dependence begins to saturate when approaching the minimum.

Another significant circumstance is the following. The tensile stress is kept for a long time
(5–7 ps) near its highest value (“plateau”), see figure 11. This increases by several times the
value of the preexponential factor in the expression for the probability of nucleation of the bubble
in the expanded nickel melt.

Figure 12 shows the longitudinal velocity profile in the vicinity of the segment along the x



Figure 10. Pressure profile before break point. Red vertical straight line and a red circlemarker
point out the position of the place of greatest tension.
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axis, on which the greatest stretchings are achieved, shown in figures 10 and 11. Let us estimate
the stretching rate V̇ /V according to figure 12.

We have:

V̇ /V = (d(∆x)/dt)/∆x = ∆u/∆x = 3× 109 1/s. (6)

For ∆x in (6), we took the length of the segment along the x axis, shown in figure 12. Herewith
the speed difference ∆u at the ends of this segment is approximately 8 m/s.
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Take the data on the strength of the melt of nickel from the article [57]. According to this
work, the strength of the liquid phaseσ decreases with increasing temperature approximately
according to the law

σ = s0 − s1 T, (7)

where s0 = 11.4 GPa, s1 = 2.2 GPa/kK, T in kK. The expression (7) is obtained according to
the article [57], if we assume that the stretching rate is three times lower than the value (6). We
consider this decrease in the rate of stretching to be justified, since nickel in the stretching zone
has been in a stretched state for quite some time, see figure 11. Near the melting point of Nickel
at zero pressure Tm(p = 0) = 1728 K formula (7) gives a strength value of σ at T = 1.728 kK
approximately 7.6 GPa. For more accurate strength calculation, additional molecular dynamics
calculations are required. According to our simulation, nickel in the layer of greatest tension is
either in the liquid phase or in the state of a two-phase mixture, see figures 8 and 9.

7. Breaking criterion and ablation threshold

From what was said in the previous section, it follows that there is an uncertainty of the order
of 10% relative to at what tensile stress nucleation inside the nickel will begin. Our calculated
data, taking into account such an error, indicate the following:

• First, the first break occurs in the first layer of nickel, not on the first nickel–aluminum
contact.
Words “first break” refer to the spall threshold at the smallest fluence value Fabs|abl-1 with
the growth of fluence Fabs from zero.

• Second, the threshold value Fabs|abl-1 is about 40 mJ/cm2. This value is in good agreement
with experiment (1).

• Third, the depth of the gap xcraft|abl-1 is 20–30 nm, which also agrees well with the
experiments (2).



Additionally note. The depth of the internal break in nickel varies little with the fluence (see
figure 11). The pressure at the first contact boundary remains positive in the considered time
range up to about 20 ps.

8. Conclusions

An extensive cycle of experimental measurements was performed on two laser systems. The
measurements were carried out on a layered target of alternating layers of nickel and aluminum.
The advantages of our measurements are that there were two lasers. They differed greatly.
The radiation was focused into a small (ytterbium system) and a large (TiS laser) spot of
illumination. Thresholds and crater depths were compared. This greatly increased the reliability
of experimental data.

It is very important that each experiment quantified how much energy Fabs absorbed by
the target. Just on this circumstance a detailed comparison of the data of experiments and
calculations is based.

The calculations allowed us to look “inside” what is happening in the films. An inverse
behavior of the electron temperature profile at an early stage was found, see section 4. The
melting process is analyzed as energy is transferred from the electron subsystem to the ion
subsystem, see section 5. The interference of acoustic waves inside the first nickel layer was
studied, see section 6. Finally, the analysis of tensile stresses and the rate of deformation
allowed us to draw theoretical conclusions about the amplitude of Fabs|abl-1 and the crater
depth xcrat|abl-1, section 7. It turned out that the theoretical values are in good agreement with
the experiments, compare sections 2 and 7.
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[35] Romashevskiy S A, Tsygankov P A, Ashitkov S I and Agranat M B 2018 Appl. Phys. A 124 376
[36] Kudryashov S I, Gakovic B, Danilov P A, Petrovic S M, Milovanovic D, Rudenko A A and Ionin A A 2018

Appl. Phys. Lett. 112 023103
[37] Inogamov N A and Zhakhovskii V V 2014 JETP Lett. 100 4–10
[38] Khokhlov V A, Inogamov N A, Zhakhovsky V V, Shepelev V V and Il’nitsky D K 2015 J. Phys.: Conf. Ser.

653 012003
[39] Khokhlov V A, Zhakhovsky V V, Khishchenko K V, Inogamov N A and Anisimov S I 2016 J. Phys.: Conf.

Ser. 774 012100
[40] Khokhlov V A, Inogamov N A, Zhakhovsky V V, Ilnitsky D K, Migdal K P and Shepelev V V 2017 AIP

Conf. proc. 1793 100038
[41] Ivanov D S and Zhigilei L V 2003 Phys. Rev. B 68 064114
[42] Demaske B J, Zhakhovsky V V, Inogamov N A and Oleynik I I 2010 Phys. Rev. B 82 064113
[43] Inogamov N A et al 2012 AIP Conf. Proc. 1464 593–608
[44] Romashevskiy S A, Ashitkov S I and Agranat M B 2016 Appl. Phys. Lett. 109 261601
[45] Romashevskiy S A, Ashitkov S I, Ovchinnikov A V, Kondratenko P S and Agranat M B 2016 Appl. Surf.

Sci. 374 12–8
[46] Wang X W et al 2017 Phys. Rev. Appl. 8 044016
[47] Struleva E V, Komarov P S and Ashitkov S I 2019 High Temp. 57 659–62
[48] Liu J M 1982 Opt. Lett. 7 196–8
[49] Anisimov S I, Kapeliovich B L and Perel’man T L 1974 Sov. Phys. JETP 39 375–7
[50] Anisimov S I, Inogamov N A, Petrov Yu V, Khokhlov V A, Zhakhovskii V V, Nishihara K, Agranat M B,

Ashitkov S I and Komarov P S 2008 Appl. Phys. A . A 92 939–43
[51] Inogamov N A, Zhakhovskii V V and Khokhlov V A 2018 J. Exp. Theor. Phys. 127(1) 79–106
[52] Khokhlov V A, Zhakhovsky V V, Petrov Yu V, Shepelev V V, Ilnitsky D K, Migdal K P and Inogamov N A

2019 J. Phys.: Conf. Ser. 1147 012070
[53] Povarnitsyn M E, Itina T E, Sentis M, Khishchenko K V and Levashov P R 2007 Phys. Rev. B 75 235414
[54] Povarnitsyn M E, Itina T E, Levashov P R and Khishchenko K V 2013 Phys. Chem. Chem. Phys. 15 3108–14
[55] Khokhlov V A, Inogamov N A, Anisimov S I, Zhakhovsky V V, Shepelev V V, Ashitkov S I, Komarov P S,

Agranat M B and Fortov V E 2010 Investigation of two-temperature relaxation in thin foil on a glass
substrate initiated by the action of ultrashort laser pulse Equations of States of Matter — 2010, The
compendium of the XXV Int. Conf. on Equations of State for Matter, Ed. by Fortov V.E. et al., March
1-6, 2010, Elbrus, Kabardino-Balkaria, Russia. (Chernogolovka) pp 127–9

[56] Inogamov N A, Zhakhovsky V V, Ashitkov S I, Khokhlov V A, Shepelev V V, Komarov P S, Ovchinnikov
A V, Sitnikov D S, Petrov Yu V, Agranat M B, Anisimov S I and Fortov V E 2011 Contrib. Plasma Phys.
51 367–74

[57] Mayer A E and Mayer P N 2015 J. Appl. Phys. 118 035903


